Realize Your Product Promise™

Scale-Adaptive Simulation (SAS) Turbulence Modeling

Fluid Dynamics

Structural Mechanics

Electromagnetics

Systems and Multiphysics

F.R. Menter, ANSYS Germany GmbH

ANSYS® Unsteady RANS Based Models

- URANS (Unsteady Reynolds averaged Navier Stokes) Methods
	- URANS gives unphysical single mode unsteady behavior
	- Some improvement relative to steady state (RANS) but often not sufficient to capture main effects
	- Reduction of time step and refinement of mesh do not benefit the simulation
- SAS (Scale-Adaptive Simulation) Method
	- Extends URANS to many technical flows
	- Provides "LES"-content in unsteady regions
	- Produces information on turbulent spectrum
	- Can be used as basis for acoustics simulations

Assumptions Two-Equation Models

- Largest eddies are most effective in mixing
- Two scales are minimum for statistical description of large turbulence scales
- Two model equations of independent variables define the two scales
	- Equation for turbulent kinetic energy is representing the large scale turbulent energy
	- \mathcal{S} Second equation (ε , ω , $k\mathcal{L}$) to close the system
	- Each equation defines one independent scale
	- $-$ Both ε and ω -equations describe the smallest (dissipate) eddies, whereas two-equation models describe the largest scales
	- Rotta developed an exact transport equation for the large turbulent length scales. This is a much better basis for a term-by-term modelling approach

Classical Derivation 2 Equation Models ANSYS®

- The k-equation:
	- Can be derived exactly from the Navier-Stokes equations
	- Term-by-term modelling
- The ε (ω -) equation:
	- Exact equation for smallest (dissipation) scales
	- Model for large scales not based on exact equation
	- Modelled in analogy to kequation and dimensional analysis
	- Danger that not all effects are included

 (ρk) $\partial(\rho \overline{U}_i k)$ R $\partial(\mu_i \partial k)$ \mathcal{L}) and \int $\bigg)$ $\sqrt{\frac{\sigma}{\sigma}}$ $\frac{\partial x}{\partial x}$ $\left(\begin{array}{cc} \sigma_k & c x_j \end{array}\right)$ $\left(\begin{array}{cc} u & \partial k \end{array}\right)$ ∂x_i ∂k \vert $\partial x_i \vert \sigma_k \partial x_i \vert$ ∂ $\left(\begin{array}{cc} \mu & \partial k \end{array}\right)$ $= P_k - c_{\mu} \rho k \omega + \frac{C}{2} \left| \frac{\mu_t}{\rho} \frac{\partial \kappa}{\partial \kappa} \right|$ ∂x_i $\left[\begin{matrix}k & 0 \end{matrix}\right]^{k}$ $\left[\begin{matrix}k & 0 \end{matrix}\right]^{k}$ $\partial(\rho \overline{U}_{i}k)$ ∂ $+\frac{C(SC_j\omega_j\omega)}{2}=P_k-c_{ij}\rho k\omega+\frac{C_j}{2}$ ∂t ∂x_i $\left| \int K_i \right|^{k}$ $\partial(\rho k)$ $\partial(\rho U_k)$ $k \alpha_j$ t α $j \setminus {\bf^U}_k$ $\cup \lambda_j$ $k \sim \mu P N \omega$ ^{Ω} *j* j^{N} /_D x_i *k* $x_i \vert \sigma_k \partial x_i \vert$ $P_{k} - c_{\mu} \rho k \omega + \frac{c}{\rho_{k}} \left| \frac{\mu_{t}}{2} \right|$ x_i $\left| \begin{matrix} k & \mu \\ \end{matrix} \right|^{k}$ ∂x_i U_{ik} $\partial \mu_{ik}$ ∂k *t* ∂x_i k) $\partial(\rho U_k)$ σ_{ι} α_{ι} | μ_{t} OK | $\beta K\omega + \frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ ρk) $C(\rho U_j k)$ R R R Q Q μ_t μr Ω_{μ} λ $(\rho\omega)$ $\partial(\rho\overline{U}_{i}\omega)$ (ω) _n $_{\rho}(\omega)$ _{$($ 1} $_{\rho}$ ∂ $(k\omega) + \frac{\omega}{\partial x} \left[\frac{\mu_t}{\sigma} \frac{\partial \omega}{\partial x} \right]$ $\frac{1}{2}$ \int \setminus $(\sigma_{\omega}$ OX_j $)$ $\begin{pmatrix} u & \partial \omega \end{pmatrix}$ ∂x_i $\partial\omega$) $\partial x_i \vert \sigma_{\omega} \partial x_i \vert$ ∂ $\left(\begin{array}{cc} \mu & \partial \omega \end{array} \right)$ $\left|\rho(k\omega)+\frac{\sigma}{2}\right|\left|\frac{\mu_t}{2}\frac{\partial\omega}{\partial x}\right|$ \int $\partial x_i \left(\sigma_o \partial x_i \right)$ $\int_{\alpha(L_{\epsilon})} \partial \left[\mu_t \partial \omega \right]$ $\frac{\infty}{4}$ $\rho(k\omega) + \frac{\infty}{2}$ $\frac{\mu_t}{2}$ $\left(k\int_{-\infty}^{\infty} \frac{\partial x}{\partial x_i}\right| \sigma_{\omega} \partial x$ (ω) _{2(ko)}, ∂ | μ , $\partial \alpha$ $\left|P_k - \beta\right| \frac{\omega}{I} \left|\rho(k\omega) + \frac{\omega}{2I}\right| \frac{\mu_t}{I} \frac{\omega \omega}{2I}$ $\int_{0}^{k} f(x) dx$ $\int_{0}^{k} f(x) dx$ $\begin{bmatrix} 0 & \omega \end{bmatrix}$ $\begin{bmatrix} a & b \end{bmatrix}$ $\frac{\infty}{4}$ $\left|P_k-\beta\right| \frac{\infty}{4}$ $\rho(k\omega)+\frac{1}{4}$ (k) (k) (k) (i) $(\omega)_R$ $_{\rho}(\omega)$ _{2(kc)}. $=\alpha\left|\frac{\omega}{I}\left|P_k-\beta\right|\frac{\omega}{I}\left|\rho(k\omega)+\frac{C}{2I}\right|\frac{\mu_t}{I}$ ∂x_i $\left(k\right)^{k}$ $\left(k\right)^{k}$ $\partial(\rho U, \omega)$ (ω), (ω) ($+\frac{\partial (\rho \circ \rho \omega)}{\partial z} = \alpha \frac{\omega}{\partial z} \left| P_k - \beta \right| \frac{\omega}{\partial z} \left| \rho (k \alpha) \right|$ ∂t ∂x_i $\left(k\right)^{-k}$ $\partial(\rho\omega)$ $\partial(\rho U_j\omega)$ (ω) *j* \int_t^{∞} $j \vee \omega$ ₀ ω _j \mathcal{P} _L $\mathcal{P}(\mathcal{N}^{\omega})$ *j* \wedge \int_0^{ω} \int ω $x_i \vert \sigma_{\omega} \partial x_i \vert$ $k\omega$)+ $\frac{v}{2}$ | $\frac{\mu_t}{2}$ $\frac{\omega \omega}{2}$ | $k \int_{-\infty}^{\infty} \frac{\partial x_i}{\partial x_i} \, d\sigma_{\omega} \, dx_i$ $P_k - \beta \frac{\omega}{I} \left[\rho (k\omega) + \frac{\omega}{I} \left[\frac{\mu_t}{I} \frac{\partial \omega}{\partial \omega} \right] \right]$ x_i $(k)^{-k}$ $(k)^{k}$ ∂x_i c $\overline{U}_{i}\omega$ (a) ω (a) ω ∂ (u, $\partial \omega$ *t* ∂x_i $\left(k\right)^{-k}$ $\left(k\right)^{k}$ $\partial x_i \left(\sigma_{\omega} \partial x_i\right)$ ω | μ_t 00 | ρ ($k\omega$)+ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{\rho\omega}{\rho} + \frac{\partial(\rho U_j\omega)}{\rho} = \alpha \left(\frac{\omega}{l} \right) P_k - \beta \left(\frac{\omega}{l} \right) \rho(k\omega) + \frac{\partial}{\rho} \left(\frac{\mu_l}{l} \frac{\partial\omega}{\partial l} \right)$ ω \cdots ω

$$
\mu_t = \rho \frac{k}{\omega}
$$

ANSYS Source Terms Equilibrium – k- ω Model

Only one Scale in Sources (S~1/T)

$$
\frac{\partial(\rho k)}{\partial t} + \frac{\partial(\rho U_j k)}{\partial x_j} = \frac{\mu_t (S^2 - c_\mu \omega^2)}{\mu_t (S^2 - c_\mu \omega^2)} + \frac{\partial}{\partial x_j} \left(\frac{\mu_t}{\sigma_k} \frac{\partial k}{\partial x_j}\right)
$$

$$
\frac{\partial(\rho \omega)}{\partial t} + \frac{\partial(\rho U_j \omega)}{\partial x_j} = \frac{\rho(c_{\omega 1} S^2 - c_{\omega 2} \omega^2)}{\rho(c_{\omega 1} S^2 - c_{\omega 2} \omega^2)} + \frac{\partial}{\partial x_j} \left(\frac{\mu_t}{\sigma_\omega} \frac{\partial \omega}{\partial x_j}\right)
$$
Output S
One input scale – two output scales?
Source terms do not contain information on two independent scales

One input scale – two output scales? Source terms do not contain information on two

Determination of *L* **in** *k-*^w **Model ANSYS®**

k-equation:

$$
\frac{\partial(k)}{\partial t} + \frac{\partial(U_k k)}{\partial x_k} = \frac{k}{\omega} (S^2 - c_\mu \omega^2) + \frac{\partial}{\partial y} \left[\frac{k}{\omega} \frac{\partial k}{\partial y} \right]
$$

- Diffusion term carries information on shear-layer thickness δ
- Turbulent length scale proportional to shear layer thickness
- Finite thickness layer required
- Computed length scale independent of details inside turbulent layer
- No scale-resolution, as *L^t*

$$
0 = \frac{k}{\omega} (S^2 - c_{\mu} \omega^2) + c \frac{1}{\delta} \left[\frac{k}{\omega} \frac{k}{\delta} \right]
$$

 $\omega \sim S$ from ω -equation

Finite thickness layer required
\nComputed length scale
\nindependent of details inside
\nturbulent layer

\nNo scale-resolution, as
$$
L_t
$$

\n
$$
L_t \sim \frac{\sqrt{k}}{\omega} \sim \frac{\sqrt{S^2 \delta^2}}{S} \sim \delta
$$
\nalways large and dissipative

ANSYS®

Rotta's Length Scale Equation

- To avoid the problem that the $\varepsilon(\omega)$ equation is an equation for the smallest scales, an equation for the large (integral) scales is needed.
- This requires first a mathematical definition of an integral length scale, *L*.
	- In Rotta's (1968) approach this definition is based on two-point correlations
- Based on that definition of *L,* an exact transport equation can be derived from the Navier-Stokes equations (the actual equation is based on *kL*)
- This exact equation is then modelled term-by-term

Rotta, J.C.: Über eine Methode zur Berechnung turbulenter Scherströmungen, Aerodynamische Versuchsanstalt Göttingen, Rep. 69 A14, (1968).

Two-Point Velocity Correlations ANSYS®

Integral Length Scale:

- The integral of the correlations provides a quantity, *L*, with dimension 'length'.
- *L* is based only on velocity fluctuations and can therefore be described by the Navier-Stokes equations.
- Exact equation for *L* (or *kL*, ..) can be derived.
-

Exact Transport Equation Integral Length-Scale (Rotta)

Exact transport equations for Φ **=***kL* **(boundary layer form):**

$$
\frac{\partial(\Phi)}{\partial t} + \frac{\partial(U_k \Phi)}{\partial x_k} = -\frac{3}{16} \frac{\partial U(x)}{\partial y} \int R_{21} dr_y - \frac{3}{16} \int \frac{\partial U(x + r_y)}{\partial y} R_{12} dr_y +
$$

$$
\frac{3}{16} \int \frac{\partial}{\partial r_k} (R_{(ik)i} - R_{i(k)}) dr_y + v \frac{3}{8} \int \frac{\partial^2 R_{ii}}{\partial r_k \partial r_k} dr_y -
$$

$$
\frac{\partial}{\partial y} \left\{ \frac{3}{16} \int \left[R_{(i2)i} + \frac{1}{\rho} (\overline{p'v} + \overline{vp'}) \right] - v \frac{\partial}{\partial y} (\Phi) \right\} \text{ with } \Phi = kL(x)
$$

Important term:

$$
\frac{3}{16}\int \frac{\partial U_i(x+r_y)}{\partial y}R_{12}dr_y
$$

Important term:

$$
\frac{\partial U(x+r_y)}{\partial y} = \frac{\partial U(x)}{\partial y} + \frac{\partial^2 U(x)}{\partial y^2} r_y + \frac{\partial^3 U(x)}{\partial y^3} \frac{r_y^2}{2} + \dots
$$
\n
$$
\int \frac{\partial U(x+r_y)}{\partial y} R_{12} dr_y \rightarrow \frac{\partial U(x)}{\partial y} \int R_{12} dr_y + \frac{\partial^2 U(x)}{\partial y^2} \int r_y R_{12} dr_y + \frac{1}{2} \frac{\partial^3 U(x)}{\partial y^3} \int r_y^2 R_{12} dr_y
$$
\n• Rotta:\n
$$
\frac{\partial^2 U(x)}{\partial y^2} \int r_y R_{12} dr_y = 0
$$

ry

• Due to symmetry of R_{ii} with respect to r_v for homogeneous turbulence

Transport Equation Integral Length-Scale (Rotta)

Transport equations for *kL***:**

$$
\frac{\partial(\rho\Phi)}{\partial t} + \frac{\partial(\rho U_k\Phi)}{\partial x_k} = -\overline{\rho u v} \left(\mathcal{L} \frac{\partial U_i(x)}{\partial y} + \zeta_3 L^3 \frac{\partial^3 U_i(x)}{\partial y^3} \right) - c_L c \rho \left(\frac{q^2}{2} \right)^{3/2} + \frac{\partial}{\partial y} \left\{ \frac{\mu_t}{\sigma_\Phi} \frac{\partial}{\partial y} (\Phi) \right\}
$$

• Equation has a natural length scale:

$$
L^2 = \frac{c_l - c}{\zeta_3} \left| \frac{\partial U / \partial y}{\partial^3 U / \partial y^3} \right|
$$

 $\zeta_3 = 0$

- Problem $-3rd$ derivative:
	- Non-intuitive
	- Numerically problematic

• If
$$
\zeta_3 = 0
$$
 - No natural length scale

– No fundamental difference to other scale-equations

Virtual Experiment 1D Flow

$$
\frac{\partial^2 U}{\partial y^2} \int r_y R_{12} dr_y = 0
$$
 ?

$$
\widetilde{R}_{12} = \frac{u(x)v(x + r_y)}{\overline{u(x)v(x)}} \qquad \qquad \overline{u(x)v(x)} = const. =
$$

$$
= \frac{u(x)v(x+r_y)}{u(x)v(x)}
$$

$$
\overline{u(x)v(x)} = const. = \frac{\tau_w}{\rho}
$$

Logarithmic layer $L_f = ky$

$$
\widetilde{R}_{12}^{I}(\vec{r}_{y}) < \widetilde{R}_{12}^{I\!I}(\vec{r}_{y})
$$
\n
$$
\widetilde{R}_{12}^{I\!I\!I}(\vec{r}_{y}) = \widetilde{R}_{12}^{I\!I\!I}(\vec{r}_{y}) \qquad \widetilde{R}_{12}^{I\!I\!I\!I}(\vec{r}_{y}) \approx \widetilde{R}_{12}^{I\!I}(-\vec{r}_{y})
$$
\n
$$
\widetilde{R}_{12}^{I\!I\!I\!I}(-\vec{r}_{y}) < \widetilde{R}_{12}^{I\!I\!I\!I}(\vec{r}_{y})
$$
\nTherefore

$$
\int r_y R_{12} dr_y \neq 0
$$

New 2-Equation Model (KSKL)

$$
\frac{\partial(k)}{\partial t} + \frac{\partial(U_j k)}{\partial x_j} = P_k - c_{\mu}^{3/4} \frac{k^{3/2}}{L} + \frac{\partial}{\partial x_j} \left(\frac{v_t}{\sigma_k} \frac{\partial k}{\partial x_j} \right)
$$

$$
\frac{\partial \Phi}{\partial t} + \frac{\partial (U_j \Phi)}{\partial x_j} = \frac{\Phi}{k} \left(\zeta_1 P_k - \zeta_2 \frac{1}{\kappa^2} L^2 v_t (U^{\prime \prime})^2 \right) - \zeta_3 \cdot k + \frac{\partial}{\partial y} \left[\frac{v_t}{\sigma_{\Phi}} \frac{\partial \Phi}{\partial y} \right]
$$

With:

$$
\Phi = \sqrt{k}L \qquad V_t = c_{\mu}^{1/4}\Phi \qquad |U'| = \sqrt{\frac{\partial U_i}{\partial x_j}\frac{\partial U_i}{\partial x_j}}; \quad |U''| = \sqrt{\frac{\partial^2 U_i}{\partial x_j\partial x_j}\frac{\partial^2 U_i}{\partial x_k\partial x_k}}; \quad L_{\nu K} = \kappa \left|\frac{U'}{U''}\right|
$$

v. Karman length-scale as natural length-scale:

$$
L \sim \kappa \left| \frac{\partial U / \partial y}{\partial^2 U / \partial y^2} \right| = L_{\nu K}
$$

SAS Model Derivation ANSYS®

- Using the exact definition and transport equation of Rotta, we re-formulated the equation for the second turbulence scale.
- We use a term-by-term modelling approach based on the exact equation.
- This results in the inclusion of the second velocity derivative U'' in the scale equation
- Based on U'' the scale equation is able to adjust to resolved scales in the flow.
- The KSKL model is one variant of the SAS modelling concept, as these terms can also be transformed into other equations (ε - or ω).

Transformation of SAS Terms to SST Model

• Tranformation:

$$
\Phi = \frac{1}{c_{\mu}^{1/4}} \frac{k}{\omega}
$$

Dt D Dt Dk Dt k k D Dt Dk c k Dt D Dt c D F F F F F F w w w 1/ 4 1/ 4 2 1 1 1 2 2 2 2 2 2 *j t* 2 1 *j j j j j j j vK ^U k k L S S t x x x x x x x L* ^w w ^w ^w ^w ^w w w ^z k ^w ^w ^F Wilcox Model BSL (SST) Model SAS 2 2 / / *vK U y L U y* k

ANSYS® 2-D Stationary Flows: KSKL - RANS

NACA-4412 airfoil at 14°: trailing edge separation

Limitation of Growth by U'' ANSYS®

ANSYS® One Model – Two Modes

RANS Model $L \sim \delta$ SAS $L-\lambda$

SAS Modell - 2D Periodic Hill

Time averaged velocity profiles U

Fluent-SAS Model Volvo Bluff Body : Cold Case

VOLVO Cold Case

ANSYS® Test case: Mirror Geometry

- **EU project DESIDER Testcase**
- **Plate dimensions LW= 2.41.6**
- **Cylinder Diameter : D = 0.2 m**
- **Rear Face location : 0.9 m**
- **Free stream Velocity: 140 km/h**
- **Re^D : 520 000**
- **Mach: 0.11**

Test case: Mesh ANSYS®

Mesh: Box around the Plate & Cylinder

- Height of domain: 10 diameters (D=0.2m)
- Coarse and fine meshes
- wall-normal distance around 1-3 *10 -4 m
- obstacle edges resolution: step sizes around 0.02*D (height) 0.03*D (circumf.)
- Flow: Air as ideal gas

Grid ~ 3 million nodes

Validation: Near field SPL

ANSYS® Blow-Down Simulation – SAS (SST)

- $Mesh 1x10⁷$ control volumes hybrid unstructured
- Scale resolving results:
	- SAS and DES show similar flow pattern
	- SAS model does not rely on grid spacing
	- SAS can be applied to moving meshes with more confidence

Courtesy VW AG Wolfsburg: O. Imberdis, M. Hartmann, H. Bensler, L. Kapitza VOLKSWAGEN AG, Research and Development, Wolfsburg, Germany D. Thevenin University of Magdeburg

Flow Topology and Mass Flow ANSYS®

Mass flow Rates

Intake Valve	Exp.	RANS	DES	SAS
3 mm		0.95	0.985	0.996
9 _{mm}		0.988		0.99

Courtesy VW AG Wolfsburg: O. Imberdis, M. Hartmann, H. Bensler, L. Kapitza VOLKSWAGEN AG, Research and Development, Wolfsburg, Germany D. Thevenin University of Magdeburg

Geometry of the Cavity ANSYS®

Mesh: 5.8 e 6 Cv – double O-grid ANSYS

Turbulent structure by q-criterionANSYS®

Wave propagation by Fluctuating ANSYS® Density

Eddy viscosity ratio @ $q = -500000 (q = 1/2 (S.S - \Omega)Q)$

k26 – k29

Testcase Description – ANSYS® Experimental Test Facility and Data

- **The experimental data is provided by the Institute of Aerodynamics and Fluid Mechanics from TUM (not yet released)**
- **Experiments are performed including a moving belt**

Courtesy by TU Munich, Inst. of Aerodynamics

Computational Mesh 2

- **108,034,893 Cells**
- **Four Refinement Boxes**
- **MRF-Zones**

DrivAir Generic Car Model

- Courtesy Tu Munich
- **Currently studied** with ANSYS CFD (Fluent and CFX)
- Data not yet public

ANSYS Overall Summary

- SAS is a second generation URANS model
	- It is derived on URANS arguments
	- $-$ It can resolve turbulence structures with LES quality
	- A strong flow instability is required to generate new resolved turbulence
- Examples
	- Flows past bluff bodies
	- Strongly swirling flows (combustion chamber)
	- Strongly interacting flows (mixing of two jets etc.)
- SAS Model is first and relatively save step into Scale-Resolving Simulations **(**SRS) modeling
	- Worthwhile to try
	- Alternative Detached Eddy Simulation (DES)