

Scale-Resolving Simulations in Industrial CFD - Models and Best Practice

Fluid Dynamics

Structural Mechanics

Electromagnetics

Systems and Multiphysics

F.R. Menter, Gritskevich, M.A.; Egorov, Y.; Schütze, J.

Motivation for Scale-Resolving Simulation (SRS)

- Accuracy Improvements over RANS
 - Flows with large separation zones (stalled airfoils/wings, flow past buildings, flows with swirl instabilities, etc.)
- Additional information required
 - Acoustics Information on acoustic spectrum not reliable from RANS
 - Vortex cavitation low pressure inside vortex causes cavitation – resolution of vortex required
 - Fluid-Structure Interaction (FSI) unsteady forces determine frequency response of solid.

ANSYS LES - Wall Bounded Flows

- A single Turbine (Compressor) Blade (Re=10⁵-10⁶) with hub and shroud section
- Need to resolve turbulence in boundary layers
- Need to resolve laminarturbulent transition

Method	Number of Cells	Number of time steps	Inner loops per Δ t.	CPU Ratio
RANS	~10 ⁶	~10 ²	1	1
LES	~10 ⁸ -10 ⁹	~10 ⁴⁻ 10 ⁵	10	10 ⁶

Therefore Hybrid RANS-LES Methods

Q-criterion (\Omega^2-S²): Q=10⁹, colored by z-velocity:

 Due to high Re number and moderate a, it looks still ok near trailing edge even though span=0.05c

5 © 2011 ANSYS, Inc. October 17, 2013

• NACA 0012: $Re_{chord} = 1.1 \cdot 10^6$

ANSYS WB Unstructured Hex Mesh

ANSYS 5%chord, 11M cells, $\Delta t=1.5 \ \mu s$

Pressure and skin friction coefficients Even on this grid cf is too low -> WMLES (see later)

ANSYS Detached Eddy Simulation (DES)

Hybrid Model:

- RANS equations in boundary layer.
- LES " detached " regions.

Switch of model:

- Based on ratio of turbulent length-scale to grid size.
- Different numerical treatment in RANS and LES regions.

- Overcomes threshold limit of LES
- Explicit grid sensitivity in RANS region
- Open question concerning transition region between RANS and LES

ANSYS DES for SST – Strelets (2000)

• k-equation RANS

$$\frac{\partial(\rho k)}{\partial t} + \frac{\partial(\rho \overline{U}_j k)}{\partial x_j} = P_k - \rho \frac{k^{3/2}}{L_t} + \frac{\partial}{\partial x_j} \left[(\mu + \frac{\mu_t}{\tilde{\sigma}_{\kappa}}) \frac{\partial k}{\partial x_j} \right] \qquad \qquad L_t = \frac{\sqrt{k}}{\beta^* \omega}$$

• k-equation LES

$$\frac{\partial(\rho k)}{\partial t} + \frac{\partial(\rho \overline{U}_{j}k)}{\partial x_{j}} = P_{k} - \rho \frac{k^{3/2}}{C_{DES}\Delta} + \frac{\partial}{\partial x_{j}} \left[(\mu + \frac{\mu_{t}}{\tilde{\sigma}_{\kappa}}) \frac{\partial k}{\partial x_{j}} \right] \qquad \Delta = \max(\Delta x, \Delta y, \Delta z)$$

• k-equation DES

$$\frac{\partial(\rho k)}{\partial t} + \frac{\partial(\rho \overline{U}_j k)}{\partial x_j} = P_k - \rho \frac{k^{3/2}}{\min(L_t; C_{DES} \Delta)} + \frac{\partial}{\partial x_j} \left[(\mu + \frac{\mu_t}{\tilde{\sigma}_{\kappa}}) \frac{\partial k}{\partial x_j} \right]$$

ANSYS Grid Sensitivity with DES Model

Requirement:

 $\Delta x > \delta$

Alternative – Shielding functions – Delayed DES (DDES)

11 © 2011 ANSYS, Inc. October 17, 2013

ANSYS DES for SST – Delayed DES (DDES)

- DDES provides shielding functions which keep DES in RANS mode in attached boundary layers even for fine grids:
- Destruction term original DES-SST model :

$$E = \rho \frac{k^{3/2}}{\min(L_t; C_{DES}\Delta)} = \rho \frac{k^{3/2}}{L_t \min(1; C_{DES}\Delta/L_t)} = \rho \frac{k^{3/2}}{L_t} \max\left(1; \frac{L_t}{C_{DES}\Delta}\right)$$

 DES function used for SST model to shield boundary layer from DES impact (Delayed DES – DDES)

$$F_{DES-CFX} = \max\left(\frac{L_t}{C_{DES}\Delta} \cdot (1 - F_{DDES}), 1\right); \quad F_{SST} = 0, F_1 \text{ or } F_2, F_{DDES}$$

• Shielding up to: $\Delta_{\max} > 0.1 \cdot \delta_{BL}$

DES/DDES of Separated Flow around a realistic Car model exposed to Crosswind **ANSYS**[®] DDES DES Model LES Exp. U=40 m/sYaw angle 20° $\text{Re}_{\text{H}} \sim 10^{6}$ Drag (SCx) 0.71 0.69 0.7 07 **Courteys PSA Peugeot Citroën** DES DDES

DES Problem "Grey Areas"

- Model has not fully switched between RANS and LES mode
 - Grid resolution to low
 - Instability too weak
- Balance of resolved and unresolved portions of the flow is not achieved – loss of turbulent kinetic energy
- Undefined model
- Further mesh refinement required

th X≰

Courtesy: Herr Sohm – BMW AG

SAS and DES Model for triangular Cylinder

 SAS and DDES work well for strongly unstable flows

ANSYS[®]

- Often produce very similar results
- Both, SAS and DES rely on flow instability to quickly produce unsteady turbulence – this works well for many flows

WMLES: Near Wall Scaling **ANSYS**[®]

- Turbulent length scale is independent of Re number
- However thickness of viscous sub layer decreases with increasing Re number
- Turbulent structures inside sublayer are damped out
- Smaller turbulence structures near the wall get "exposed" as Re increases
- WMLES: models small near wall structures with RANS and only resolve larger structures – less dependent on Re number
- Some Re number dependence for boundary layer remains as boundary layer thickness decreases with Re number

RANS

WMLES – Channel Flow at Different Re Numbers

- Solutions at very different Re numbers look essentially identical
- Differences can only be seen near the wall.
- Visible is higher
 Eddy-Viscosity for
 higher Re number
 close to wall

 $|\Omega|$ $|\Omega|$ 4.40 9.38 20. Y Y 0,5 0 $|\mathbf{U}|$ $|\mathbf{U}|$ Y 0,5 X 07 v/v0,5 0,5 0 2.5

RANS Eddy Viscosity

Re₇=18000

WMLES – Channel Flow Tests

Re _τ	Cells	LES Cells	Nodes	ΔX^+	ΔZ^+
	Number	Number	Number		
395	384 000	384 000	81×81×61	40.0	20.0
760	480 000	1 500 000	81×101×61	76.9	38.5
1100	480 000	4 000 000	81×101×61	111.4	55.7
2400	528 000	19 000 000	81×111×61	243.0	121.5
18000	624 000	1 294 676 760	81×131×61	1822.7	911.4

- Very large savings between WMLES and wall-resolved LES
- Alternative is LES with wall functions however Δx^+ and Δz^+ are a function of Δy^+

ANSYS Vortex Method

 In essence, vorticity-transport is modeled by distributing and tracking many point-vortices on a plane (Sergent, Bertoglio)

$$\omega(\mathbf{x},t) = \sum_{k=1}^{N} \Gamma_{k}(t) \eta (|\mathbf{x} - \mathbf{x}_{k}|, t) -$$

 Velocity field computed using the Biot-Savart's law

$$\mathbf{u}(\mathbf{x},t) = -\frac{1}{2\pi} \int \int \frac{(\mathbf{x}-\mathbf{x}') \times \boldsymbol{\omega}(\mathbf{x}') \mathbf{e}_z}{|\mathbf{x}-\mathbf{x}'|^2} d\mathbf{x}'$$

Vortex Method

3-D Wavy Channel (Re_H = 10,600) Mathey and Cokljat (2005)

Computational Domain

LES predictions of the reattachment point

	X _r
Exp.	4.7 h
Periodic	5. H
VM	5.2 h
Random	7.7 h

Periodic

Random number

Vortex method

WMLES – Flat Plate Grid

0.4

- Geometry and Grid
 - L x 0.4 L x 0.1 L
 (Streamwise, Normal, Spanwise)
 - Approximately 3 δ
 spanwise (δ₀=0.032)
 - Grid ~ 1Million cells (see table)
 - Y+~0.05 (to allow for higher Re numbers)
 - Expansion factor 1.15
 - For each boundary layer thickness δ one needs ~10x40x20 cells

	0.3						
Υ	0.2						
	0.1						
	0 0	0.2	0.4	X	0.6	0.8	

Re _O	Cells Number	Nodes Number	ΔX^+	ΔY^+	ΔZ^+
1000	1 085 000	251×71×63	68	$0.05 \div 300$	34
10000	1 085 000	251×71×63	520	$0.4 \div 2300$	307

WMLES – Boundary Layer

Embedded/Zonal Large Eddy Simulation (ELES, ZFLES)

 Suitable if zone with high accuracy demands is embedded into larger domain which can be covered properly by RANS models

ANSYS[®]

- Limited zone can then be covered by LES or Wall-Modelled WMLES model
- LES zone needs to be coupled to RANS zone through interfaces
- LES zone requires suitable (WM)LES resolution in time and space

ANSYS Embedded LES and Zonal Forced LES

- In many flows an area where (WM)LES is required is embedded in a larger RANS region
- In such cases, a zonal method is advantageous
- RANS and LES regions are separately defined and use different models
- Synthetic turbulence is generated at the interface to convert RANS to LES turbulence

Contours of Turbulent Viscosity Ratio (Time=1.0000e-01) ANSYS FLUENT 12.0 (3d, dp, pbns, SAS, transient)

ANSYS Coupled Zonal Modelling

In ELES/ZFLES e.g. MODEL2 can be LES turbulence model embedded in a RANS or SAS model (MODEL1), or vice versa

DIT-x: resolved 3-D structures

– Q criterion

Bounded
 CD
 advection
 scheme (BCD)

DIT-x: decay rate validation

Modelled and resolved k

ANSYS Flow Types: Globally Unstable Flows

Types of highly unstable flows:

- Flows with strong swirl instabilities
- Bluff body flows, jet in crossflow
- Massively separated flows
- Physics
 - Resolved turbulence is generated quickly by flow instability
 - Resolved turbulence is not dependent on details of turbulence in upstream RANS region (the RANS model can determine the separation point but from there 'new' turbulence is generated)
- Models
 - SAS: Most easy to use as it converts quickly into LES mode, and automatically covers the boundary layers in RANS. Has RANS fallback solution in regions not resolved by LES standards (Δt , Δx)
 - **DDES:** Similar to SAS, but requires LES resolution for all free shear flows (Δt , Δx) (jets etc.)
 - ELES: Not really required as RANS model can cover boundary layers. Often difficult to place interfaces for synthetic turbulence.

Green-recommended, Red=not recommended

ANSYS Flow Types: Locally Unstable Flows

- Types of moderately unstable flows:
 - Jet flows, Mixing layers ...
- Physics
 - Flow instability is weak RANS/SAS models stay steady state.
 - Can typically be covered with reasonable accuracy by RANS models.
 - DDES and LES models go unsteady due to the low eddy-viscosity provided by the models. Only works on fine LES quality grids and time steps. Otherwise undefined behavior.
- Models

32

- SAS: Stays in RANS mode. Covers upstream boundary layers in RANS mode. Can be triggered into SRS mode by RANS-LES interface.
- DDES: Can be triggered to go into LES mode by fine grid and small ∆t. Careful grid generation required. Covers upstream boundary layers in RANS mode.
- ELES: LES mode on fine grid and small ∆t. Careful grid generation required. Upstream boundary layer (pipe flow) in expensive LES mode. Alternative – ELES with synthetic turbulence RANS-LES interface.

ANSYS Flow Types: Locally Unstable Flows

- Resolving flow

 instability in
 moderately unstable
 flows is demanding
 in terms of:
 - Grid resolution needs to be of LES quality
 - Numerics more demanding than fully turbulent LES
 - Shielding balance between shielding and capturing instability
 - Difficult in complex industrial flows

ANSYS Flow Types: Stable Flows

- Types of marginally unstable flows:
 - Pipe flows, channel flows, boundary layers, ...
- Physics
 - Transition process is slow and takes several boundary layer thicknesses.
 - When switching from upstream RANS to SRS model, RANS-LES interface with synthetic turbulence generation required.
 - RANS-LES interface needs to be placed in non-critical (equilibrium) flow portion. Downstream of interface, full LES resolution required.
- Models
 - SAS: Stays in RANS mode. Typically good solution with RANS. Can be triggered into SRS mode by RANS-LES interface.
 - DDES: Can be triggered to go into LES mode by fine grid and small ∆t. Careful grid generation required. Covers upstream boundary layers in RANS mode.
 - ELES: LES mode on fine grid and small ∆t. Careful grid generation required. Upstream boundary layer (pipe flow) in RANS mode. Synthetic turbulence RANS-LES interface.

ANSYS°

Globally Unstable Flow – Jets in Crossflow

PhD project Benjamin Duda

- 18 month at Airbus Toulouse (Marie-Josephe Estève)
- 18 month ANSYS Germany (Thorsten Hansen, F. Menter)
- Scientific supervisors: Herve Bezard, Sebastien Deck

Problem:

- Hot air leaves engine nacelle and heats wall
- Heat shielding required
- Experiments too expensive
- RANS not accurate enough
- Simulations ANSYS-Fluent

Generic Jet in Cross Flow Configuration

ANSYS Hybrid Tetrahedral Mesh

ANSYS Hybrid Cartesian Mesh

40Courtesy: Benjamin Duda, Airbus Toulouse

ANSYS[®]

ANSYS Hot Jet in Crossflow: Conclusions

- RANS models are not able to reliably predict such flows and are therefore not useful as design tools
- A systematic study was carried out to evaluate SRS models for such applications
- In this study (for several test case configurations) it was found that all SRS methods worked equally well in predicting the main flow characteristics
- On suitable grids (~10⁶ cells) good agreement even in the secondary quantities (stresses) could be achieved
- More complex geometries studied

<u>Fatigue zone</u>

The target values are mean and RMS wall temperatures in the fatigue zone

Water of different temperature is mixing in the T-junction at Re=1.4·10⁵ (based on the main pipe bulk velocity and on its diameter)

43 © 2011 ANSYS, Inc. October 17, 2013

Isosurfaces of Q-criterion Colored with Temperature for Different SRS Models

 Sensitivity to numerics depends on the SRS model

ANSYS[®]

- SAS with BCD is virtually steady
- The reason is that the flow is not enough unstable
- Unsteady solution with resolved turbulent structures is obtained for the CD scheme
- For other models the effect of numerics is not seen from instantaneous fields

ANSYS Comparison of Different SRS Models

- CD scheme is used for comparison between different SRS models
- All models are able to predict mean and RMS profiles with sufficient accuracy

ANSYS Influence of Zonal LES, weak BCD

Wall temperature in the fatigue zone

 Noticeable differences appear when looking at the wall temperature

Top wall line

- All global models failed to provide the correct temperature distribution right past the intersection
- Only zonal (embedded) formulation is able to provide the correct mixing already from the start of the mixing zone

ANSYS Flow over a wall mounted hump

Flow configuration:

Simulation: baseline (no flow control) Testcase of EU Project ATAAC

http://cfd.mace.manchester.ac.uk/twiki/bin/view/ATAAC/WebHome

ANSYS Flow over a wall mounted hump, Geometry and Grid

Geometry:

- Spanwise extent:
 - 3.16 H (bump height)
 - 5.6 $\delta_{\text{interface}}$ (δ boundary layer thickness).

Grid:

- RANS grid with only 5 cells in spanwise direction
- LES grid: 200x100x100 (2 million)
- Grid resolution per inlet boundary layer ($\Delta x/\delta$ =10, $\Delta z/\delta$ ~20, NY~40.

Q criterion:

ANSYS Flow over a wall mounted hump Wall Shear Stress and Wall Pressure

- The Re number at the RANS-LES interface is Re_{\overline{9}}=7000
- If the simulation in the LES region is carried out with a standard LES model (WALE) the solution is lost immediately after the interface
- The WMLES formulation is able to carry the solution smoothly across and provide a good agreement with the data for two different time steps (CFL~0.5 and CFL~0.12)

ANSYS Overall Summary

- RANS modelling key to industrial CFD
 - Grid quality is key issue
- Transition modelling important for many applications
 - Turbomachinery
 - Wind turbines
 - ...
- SRS is making its way into industrial CFD
- Different types of model recommended for different types of applications
- Currently favored methods within ANSYS software:
 - SAS globally unstable flows
 - DDES globally and locally unstable flows
 - ELES/WMLES marginally unstable flows

